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STATICS AND STABJLITY OF THIN WALLED ELASTIC BEAMS

ABSTRACT

Formulation of fundemental equations of elastic aquilibrium of thin
walled beaws subject to general ‘oads 2nd dislocations sterting only
from the hypothesis of non deformed transverse cross sections,
Formulation of the fundamental equations of dynamic stability of thin
walled beams subject to general conservative loads and dislocations

by use 01 a systematic geometrical approach.
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1) STATICS

1,1) Introduction

B S e v Sy e P N

The theory of ¢laatic equilibrium of a cylinder subject to
loads applied at the bases snd represented by sz general aystem of
balanced forcea, haz been accurately and completely developsd by St. 4
Venant tl] [2] with the trsditional hypotheses of om ,oneity, iaotropy

and linear elasticity.
This study ropresents the background of the so called - 'techuaical
theory of the besms” which applies with approximation the results obtain.d

I Y |

by St. Venant to all the real caaes concerning the elastic equilibrium
of cylinders subject to any type of loads wund constrainta,.

Such applicstion is founded in a classic postulate carryin, ]
St. Venant's nape and is synthetically expressed by the following

principle: "If a system of balanced forcas acts on a limited ares S’

of the surface S of ¢ body, its effects damp nu: as they leave S' end
actuslly u.msppear st diatsnce ‘D depending upon the shapg and tha2 sizz
ot 8')

Such poatulate permits to dstermine stresses and dispisceants
naving krowledge unly of six claasic stress characteristics coanacted
vith the constraints and !vady applisd to the body, the areas clsse to
constrainta 5y concentrated loals excluded.

Howsver, some conditiozs are indispensable; of which the moat
important are: }

1) the cross section dimsnsions must bs comparzble; i
2) the body's length must be much grestsr than the s2bove aentioned |
cross dimensions.

It 13 the classic case of solid section beams for which the
technical theory has a good correspondence with reality.

The sams thing does not rpply to thin walled beams. In fact,
such ptructures are characterized by thres dimenaioncg, anyone of which
i» negligible if compared to the next one:

a) thickness of the wall 1

b) average dimension of the cross section

¢) length
For this type of structurss, which are always wore widely used J
by technical practice, it has been necessary to generalize the results




obtgined by St. Venant, specifically &s f2r as torsicnal stregses are
concerned; a nev theory has bsen expressed justifying, w#ith ejprozi~
mation; the discrepancies beiwsmn technical theory =znd teat zontroie,

T
s,

This new thesory. xnown es ths thedry of sscioriai ar

)]

developed by Viazov[3][4] snd Timoshenxo [35] iﬁ] for beams of open
croBs section, has baen later generalizzd %y Karmen-Christensen {?]
fcr tgams of genersl croes wsition,
¥lasev fjj l:é}, #ag .er [8], Kappus EQ], Goodier [IG}, atc,
applied zxkis thatry (o the probliem of elastic equilibrium gtaviifty
an¢ their results have been confirmed by tsst ceztrels,
Ravertheless, as it has been noticed by Karasn-¥si-Zang-
Chien f;l} , 1he gectorial area theory is cnly tha firit term o2 =
rapatition procedure the validity of which is in certsin cases doubtful,
3uch theory, ‘.. fact, baglcally coneizts im 4ividing ihs

ehezr flow produced by tae twigsting moment ints %o paris: ths primsry

™

enear fiow typicgl of 3t, Vemant's thesry. snd the sscozmdery shesr

fiow fasociziad with ths norss] (tresssy czussd by the non-unifeors

\

k2zis. Ecwaver, thle theory seglects the warping csuszed by the secondary
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agpicucus then the primary one,
znd, coungsquently, fundsmesially changes the static condition; further-
sore, seid iksory, <ven improving considerably the corrsctness of cal-

culatior of siressss and dsiormations ipzids the body, cannot be applied

[

5 the arsas which 27s cloes to conzirainte or concentrated loads.

Az = concliusicn, ws can zay thet the "ssctorial areas theory"
iz for ths thin wailed besas wahat the ~technicei theory”" is for the
30iid ssction beams; in other words, the limitations of both can be
considerad identical,

Therefore, in thiz Note we want tc re-exsamine froa the origin
the probles cfsliastic—equilibrium of thin walled bewmrs mabject to very
general loads and diglocationn, making use of a very general wethod,

In fact, the correct solution of the problems permits to
elixinate the limitations related tco St. Venant's postulate and to

determine exactly some problems of considerable interest for the theory




as well 2% for the practice, as:

1} the calculation of stresses in the areazs close to concentrated
loads and external constraints;

2) the caiculation of stresses assocliated with general loads scting
on the surface of the beanm;

2} .ne calculation of stresses associated . !th general dislocation,
of general interest for the study of thermic or pleatic actions.

in the first part of this study the prob.em of elastic equi-

libriua of thin welled bezms will be considerod from a general viewpoint
end basic equations and boundary conditions will be furnished,; then,

above muntioned problams will be studied and solved.

1,2} Tks basic hypothesis

The basic hypothesis on which we found our study is the
i:ypothesiz of a transversally indeformable cross section. Such hypo-
thesis vhich appeers also in the theory of sectorial asiesxs and in
Earmsn's study, iz generally acceptable for the thin walled beans
becpuse of shear diszphrams used for structures of this type with
the purpose of avoiding the buckling of the wall.

Such diaphrams are usually reslized by mzans of thin plates
walded to the wall, in order to svoicd deformaticns of the cross sectien,

Neverthelese, being such plates very thin, we can imagine
them hsving no resistance to warping outside their plane, and, conse-
quently, lsaving the beam cross section free to warp.

Therefore, in this study we will consider the profile as
uniformly stiffened alcag its whole length, that is, we will consider
every section as keaping unchanged its shape during the displacement

aseociated with general losde conditions,

1,3) Kingmatic relations

With reference to the profile shown in fig. 1, haring a constent
thickness t and a general cross section, we denote G the centroid and

0 the shear rcenter of the cross section.

i»




rig. 1

We refer the points of the surface to the orthogonal right-hand
tern Gxyz, of which axes x and y coincids with the principal 1inertia
axes »f the cross section and axis z 1is perpendicular and passes through
the centroid G. Furthsrmore, we refer the beam surface to the two groups
of orthoyonal lines formed by directrices and generatrices of the cylin-
drical surface, choosing n normal to the surface in a point P(s,z), and
® and z such that the directicns tern (;, ;, z) is right and can be super-
imposed on fixed tern Gxyz with a rigid motion.

Being 9 the displacement of point P, wve denote:

u=uinyz),
vav (xy 2), ,1)
v=w (xy 2),

the components of such displacement on the axes of fixed tern xyz, and

we denote:




£ - €@ s,
L S i (n, s, 2), (1,2}
5 = g (n, s, 2),
the cowponents of such displacement on as z. From well known relaticns
we know that:
Exttorea + V ogn + W Xan

= U &zg 4 )’ﬁ”g + wWolse (1,3)

S Ut + VXye + KOs

being oﬁj the direction cosine of the straight line i with the axis
J, and since in our case:

“’ald."-‘% J d’ﬂ-.—""ﬂ—f J a“-ﬂ.t

(1,9
«;.u’ﬂ’..nx,{g&djt’ 0
being:
x = x (8) and y =y (s) (1,5)
the cartesian coordinates of t.o points of the surface, the equation
1,3) will become:
gmu;ﬁu ”2{.&’
os
2= ,6)
Euw
The basic hypothesis permits to datermine the displacement
in the plane x y of every point of the cross section with only three
parameters only depending upon abscisse 2. In fact, dencting:
Up = Uy (2)
Vo = Vg (2) 1,7)

‘?: = ?. (z)

the dispiscement component. on x and y of the shear center 0 and the
section rotation around the sajar center, the first two equations (1,1)

can he written as follows:




ule,y.5)= bele)- S (/Y- %)
V(92 v () %&/ﬂ’——)’./ (1,8

shore (x, ¥o) are ths coordinates of the shear center 0 (fig. 2).

Trerefore, using equations (1,6), we have:

§ - undy_rvior_ e/[(._g. _,[x_/,)a(»\’]

(1,9),
1z:= ‘l.»f!&f + Y;_E{:‘1f cfi (a(.. )ﬂz)ﬂl - — .‘E!!{
ds os J_s} (4 g)als
Fig. 2
We cbserve that the quantities:
rraex) E- -y B,
dx (1,10)
p=(x-x)3;+(y-yo)g ,

gre the components on the axes 8 and n of vector R = 5?, therefore

equstions {1 2) can be finally expressad as follows:

g-“.ﬁ!’—f."h’_f/.}:
f - u.d1+n +=l. (11

e




Consequsntly, the motion of every point of the beam is expressed

by the foliowing four functions:

uozuo (Z) ’

Vo = Vo (2)

‘{. = q. (Z) ’ (1.12:

v (n,s,z) ,

and the latter can be considered, with a good spproximation, indepencent
of n, in consideration of the smallness of thickness %, and can be
written:
v=w(s,2) . {1,13)

1,4) Elasticity relations

I2 w2 noglect the normal stress &5, , we can express as foliows
the relations between the strssses components and the unit strains in

the thin wall surface:
o ¢
6"..-,_.;-‘/8‘ +»8)

e .
G";_—-—F./‘,-f":/ (1,14}
Y 4

A ;[z/f:’j /gi

In a more general cese the strain components will be expressed

by the following relations:
e »
Cpw 8,4 &,

Jes = Junrfua

) r
where & is the elastic strain and & the strain due to a3 generzal

(1,15)

dislocatiorn system, as a thermic, plastic svstem etc.

8o equations (1,14) can be written:

/ Vot ’
o;..zféé.‘a;ﬁ+‘varﬁ/_yzfse./i;.f.var.,/

Cp . ——-/ t:. /‘:..f Vé‘a/_ /_ﬁ-'. Z&"’+’é“f/
. - - - (1,16)
A - Y
Tl " Frem I




Furthermore, the basic hypethesis permits to reduce the
unknowns; in fact, since we must have:
&8;=0 1,17)
for the cross indeformability of the section, the normal stress Gs can
be expressed:
Ga Esl
‘-yd-.— “ (1;18)

while the shear.ing strain /.P. can be expressed as follows:

/J.&E}/g,‘af,a/ , B (1,19)
S
vhere b} y If’r , and Z% are general functions of z.

The basic unknowns, expressed as special stress components,

can be reduced to the following two functions:

GZ-L_% (e, -a2) @ 2
33;.=;£E;;A?4%-v¢ﬁ%’§?z={g&iéf-=’5 g;f
where:
g:-;,’+ *’6'.’ {1,21)

Taking into account the clasaic relations:

:,.Ji:? J/{'",TJ.;Z"'T? Q,22)
equations (1,20) cc.a be written as follows for (1,6):

E_[On *

1,23)
o (- Al o 5 3l 5]

and they express the general elasticity relations of thin walled beams.

Ejuations (1,23) represent the values of normsl stresses Oy
and shear stresses &5g corresponding to the middle fiber of the wall
forming the profile.

In reality such stresses vary along thickness t of tho wall,
but actually they can be considered congtent because of the thickness
ssallness, Howevsr, if the profile has open cross section, it is neces-
sary to consider, together with the stresses {1,23), the shearing stres~-
ses linearly variable along the thickness and vanishing in correspondence
with the middle fiber associated with the twist of the wall caused by

external torque.




3uch stresses, class.c ¢f St. Venant’'s study, can be expressed,

with good approximstirn, as follows:

a,,-ifer?(a”ll__%-u ?fﬁ) (1,24)

being n ihks distan:e becween the fiber and the middle surface; in fact,
said stresses ara the only ones which develop for a constant twist of
the heam and, consequently, allow the beam to balance the external
torque.

In fact, as a result of (1,24) we obtain a twisting moment

Hz, having the well known expression:
Heam T@/i_/%_ z&/ (1,25)
P 4

baing ;7— the torsional rigidity which, in case of open sections of

constant thickness t , is written:

3
J - ﬂt_é (1,26)
3

where m is the length of the middle line, and in the case of cross section

consisting of several portions of different thickness ti' is:
3

~
S Z ot 4o (1,27)

i 4
If the profile has a close section (box cr multicell beam),

stresses (1,24) are nc more necessary to give torsional rigidity to the
beam. In fact, also in case of constant twist, the external moment is
almost completely absorbed by a flow of shear stresses constant aiong
the thickness; and, compared with such stresses, the contribution given
by equations (1,24) is quite unimportant.

Therefore, in these cases, stresses (1,23) sre gsufficient to
balance any external action and, consequently, are the only stresses

which are considered acting on the wall,

1,5) kquilibrium equations

With reference to the wall element ds dz inside point P(s,z)
of the middle surface, the equilibrium equations to be imposed coincide
with the three equilibrium conditions relative to the displacement along
axes ;, §, z. The first two, concerning the equilibrium along normal n

and tangent g, become unessential because of the hypothssis on the inde-




formability of cross section of the besm., In fact, in such directions
the equilibrium is guaranteed by the mutuvail actions of the stiffeners
on the wall which can be so calculated,

Therefore, if we denote p,, Ex' By' ;z (f1ig. 3) ,respectively,
the load acting in the direction of axis z on the wall element ds dz;
the leads acting in the direction of axes x and y and the twisting
memeat On an element 0f the beam having length dz; the equilibrium

eguations are written:

ICa & e
Jx oS

v Lo = O
Ve

o7y | =
L =0 (1,28)
T2 > Py

dg poy-y 0

oz

Fig. 3

being Tx' Ty’ llz the resuitants of internal stresses T'gg in the

direction of axes x and y and the resultant moment in regards of shear \

centers 0,

10




These latters can, therefore, be expressed as follows:

7"-/:‘0‘!,‘.((//{
/ a's

V4

fr= [ee
‘y .i(/z’ ésg?faVQf

/44"' ar;th’dV“',ﬂ /;E;

A

(1,29)

being iz the internal moment expressed by equationu (1,25) and associated

to stresses 55,. which will be taken into account only in the case of
open sections,

The last equation (1,29) can have ths same form for open
sections a3 well as for box or multicell sections, by introducing a
warping function associated with constant twist,

Such function, which we denote C&g , represents the axial

warping function w(s) of the points ¢f the wall middle line when sublect

to a constant torgue having unitary negative gradient ‘V, e
In the case 5f open section beams, such functI;; is obtein~d
uy observing that, since, in sccordance with St. Venant's solution,
& xg ©oquels O in correspondence with the middle line, the second
equation (1,23), haviug:

W &) Iy (S
/e
¢;;iEf.ll-.1, , e o Vo 22 2R ="‘f;""24i w: O

glves:

Eﬁéﬂgk — L O
e

On the contrery, in the case of close or multicell sections
(fig. 4), such function can be obtained by considering that, since Tre
coincides with the ilow of stresses resulting from known solution of
Bredt-St, Venant:

Zwamw Y

11

(1,30)

(1,31)

(1,32)




being f the flow constsnt (*), the second equation (1,23), in conside-
ration of (1,30) snd (1,32), gives:

o/ets ‘,_*;g_ o a,33)

Fig. 4

(*) We must remember that flow constants f, for every element of multicell
section, can be obtained with the partial flow ti and zk relative to
meshes i and k having such elements in common, The partial flow constants
2, cen finally be obtained from monodromic condition of % and, con-
sequently, of c€’s vwhich imposes for every circuit the following relation:

f{a’s -/;é s = O a,33'

from which, denoting J;Ethe area enclosed by circuit 1, we obtain:
2L, £ =
i 10Ot Z S llie = O (1,24)
-

where CX? represents the geometric circuitation:

- fols
relative to the whole cir;uit i and ¢!$yr represents the partial geome-
trical circuitation of the element in common to meshes 1 and k. Eqs. (1,34)

repreaent a system which is linear for unknowns fi and of simple solu-

tion. In view of the above it is easy to obtain constants f.

12




Therefore, from equations (1,31) and (1,33), with a simple
quadrature procedure, we can obtain, neglecting an arbitrary constant,
the expression of function ¢’y . In general the constant is elimi-

nated with the auxiliary condition:
ol
/a/, M//w 0 1,35)
A

Thus, equations (1,29) can be written as follows:

/’/ Cus ;_.:é_?fa/ﬂ/_f /;'Of/_g/_é_. &a./ (1,36)
oz

4 o's

for open sections, and:

// cy,@/ (1,37
/ J.C_U_ra//,z// 274

4 4
for close or multicell sections.

Denoting #¢ the number cf close meshes uf crouss section, Zrom

A g

L equations (1.23) we have:

/ e / G (9 (e 24 ol ;. [0, A‘?”

A

/ - ;a/ // 1= w/g/()“/ / e Zﬁ (1,38)
7‘-4/2 -’/eazsj-/ aﬂ//ca/s

taking into account the relations:

fras= 20

{1,39)
N ofs o a/x
ds JS G/S /_{M;’ s
equation (1 ,38) gives:
Jrfd- 2240 (s )
4 Ve /vt &z (1,40)

13




and, iatroducing the potation:

J= ?g,{z (,41)

oquetion (1,37) can be written as follows:

Mon [y, slopald s Wﬁ-ﬁz., 22
os &z

d
and it appoars identical to the equation already obtainsd for open
sactions and expressed by (1,38),
Therefore, without considering the type of beam cross section,

equations {1,29) can be written as follows:

% /s

Z; = [0 fé/a//

a (1,42)

How [, ol ST 22/

]
resuliting connected to the cross section geometry by the three basic
functions:

x =x (s) y=y (8 LUy = CLOK(S)
For these functions, we must renember that, since we chose
axes X and y as main inertia axes and the center or rotetion O as shear

conter of the section, we will always have the basic relations:
de/:: ,(a)‘a//s /wga/rls o (1,43)
A /] 4

In fact, we can ootain the coordinates x, and Yo of cent 1 -t
rotation O by imposing the lzst two equations (1,43), or by using

Jouravsky's procedure for close or cellular sections [12] 5

14 o {




1,6) Basic equations of elastic equilibriue of thin walled beam having

continuous directrix and constant thickness

¥e can now obtain the dasic equations of elastic equilibrium of
thin walled beams, by changing the indefinite equilibrium eguations (1,28)
into terxs of displacement. For the moment, since we consider the bedy
free in the spsce and subject to a system of balanced forces, we know
the three transversal characteristics T, {z), Ty (z), K, (z), and we

can simplify 2quations (1,28) as folloes:

a,_f-fg_’.'!_l.fﬁ! o

ja—.uﬂdl. 7=

jru ok e ?; (1,44)

j%.f/[,; zi’f‘g/}%, ;e/_ A

The first of these equations expresses the ejuilibrium in the
direction z, and the three other ones express the identity between the
resultants of internal shear stresses and tke correspcnding stress
characteristics; such equaticns can be expressed for the displacement
parameters (1,12), taking inte account the elesticity reslations (1,23);

in fact, we have:

2 dar, dir, o/d._é*:{,; P 2 fsz)
'7"{ V2t 2k

-y Axt I3 oz o

2 e o7
*/_aa;“"z;‘:"’f*,,%’-’**f ’
oo sy ol 965, offs of

e NG S P lh 2T,

A
* otk 4 oyt S, 4 e 2, 1,48)

"’ g!é!f-}-‘”‘c ‘/5’
/szz"‘// Lper)7;

* Q{/&%.,l.aé,&},t ¢/ub7£.




P12
‘41.‘_/5!.;. ﬂ/u_‘,/ﬁ.,l- ’(u“??/g.{.f ‘,.‘_ZJ{J"’?Z&J - _é.f_///,r‘

after introducing the notations:

./,.‘/@/‘; oA .4,-./,..; .%’}‘7'/2""/»

4
4..:/@? oA, ./,,./;?,;.wv,‘ 3,
‘(.:a(,, .‘/,/%!f‘//'_/j?%a e//{) (**) (1,46)

ofas 4,./5? rod- /4{,5? oA .

Therefore, equations (1,45) are the requested elastic equilibrium
equations of thin walled besems subject to loads and dislocations. Such
systen csn be simplified by drawing fiom last three equetions the functions
5/_‘9 ,%’? , # in function of the stress characteristics Ty, Ty,
I;'and a;qal dis;Eacalent )br: For thls purpose, denoting D the determi-
nant of symmetrical matrix coefficient:

o ds ol .
Ju d‘ s d‘b

(1,47)
0Ll ‘Iel "l‘

and donoting D1k the complementary matrix cof element dik’ we obtain from

las: three equations of asystem (1,45) the following relations:

tusy . L [Jnr/D, e e 8 )

;—:& gﬁm pﬁrl*pcf?’*pﬁ‘//* {q-p’ u s +
+Dn‘7;+ Du"/r/

o/n. I [o¥, ), X oy 4 D, A, O wrt 1,48)
7;' f‘/&_‘/pzf‘zg%*fﬂca‘-;;l/e/’/‘f —%;/’%7;(&
+ R, Z;‘f'JZ%J'AZE//

(*%) The last two equations (1,4) are directly verified for open sections

with equation (1,3{) and for close or cellulsr seczZions with equation (1,33)

and with the following reletions:

[ialad - Azﬂ.«/, o a0

which ensus from the equilibrium condition in the x and y direction.
1 .
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,1.1",,?,:-,‘- pnr‘/n/

If we operate in the second part of equations (1,48) the following
linear changes:

,)//Ebﬂ,_zf D, x(5)y /{}/ ’btf';ZZI‘z&ﬂéa%éfr

y[:‘./:g DII x(s/'l’" "-a,j("/* p‘a wv‘ésjy (**%) (1,49)

J?,[S/-ji D,,J’/S/.,L Duf[&/-f- .D,,co, [S{/

(***) Equations {1,49) require the followipg invorsed relations to be true:

) oA ol Yk o Bl
a’qﬁiyhs'a#f}a??éh/gtﬂvf;_’Qﬂsafzf-l!‘.,EZ.(@;}

co,(c )= 8lps XS/ 4 &5 J/ﬁs/+ &8ss SC0(s)
furthermore, it is easy to verify that the six functions:
5 gE.  ) J

(1,49}

have the following properties:

[xatdo 1, /ggﬁgau, o, fg_gg/[&am- 0
=0 [l [oy gt

(1,49)"

[Jw Yol .._ 2:3, Jw. f(a/,a._g.;r alw,jjzd,f, ‘1>
.S S

which can be controlled tnklng into account the deterninants properties
and the relation:

J(ae)A- /""”wa//f A
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(1,50}
= ” ' X4 34 - r AL

Wil [2aTit 252 2 ///’

we car simplify as follows:

Harw _fow Y, T3, 2,

f 4 /o’.s o’'s (?

ooi, (O o/ ol + Zx
oz ‘/'25 S +7¢*z¢ (1,51)

_g_ /;‘,. ol 4 e ,7/ M 0

Therefore, the basic equation of thin walled beams is obtained
by substituting (1,51) in first equation (1,45) and observing thet for
equations (1,31) or (1,33) we always have:

deve _ oy

st ofs (1,52)

In considerstion of the above and taking into account equations
(1,49) and (1,50}, we obtain the fcllowing integral differential linear
equation:

I Dk WX [ /
Zgﬁ'd&*‘ +r):/ S ", As ﬁ/;/a// / ‘//7‘

o/ ol Ceglf . / . p
ds IS o/s 2 ﬂ-&;;’:_ ?};}'g— 73?:;;"_‘:_/-/- (1,53)

_P Jda,
- P&
which is of basic importance for the study o” thin walled beams of
transversally indeformable section subject to general forces and dislec-
cations, In view of future applications, it is therefore adv -able to
express the elasticity relaticns {(1,23) by the displacement ax.-! compo-
nent izﬁ;!yl This can be done simply by taking into account eqtu 1tions
18




(1,51} ; therefore we have:

6—3....5— .é‘_f-- t
* f-»*{JdZ 6'/

Zoamw £ [O0_ ¥ [Owall, WAL,
F2)[Os ds‘;;‘;;"”"-#-;—f!a’/,‘
4

(1,54)

_e/wetl ]
[EH e T e

which are the final expressions cf elasticity relations for thin wallasd
besms. Equation (1,53) must furnish solutions satisfying the boundary
conditions on the bases (z = 0 and z = 1) and the transversal conditions
depending upon the sk >¢ of the besm section described in following
paragraph.

1,7) Boundary conditione connected with basic equation

We divide the bourdary conditions into longitudinal conditions,
regarding the external bases z = O and z = 1, and tranaversal condittons.
In case of longitudinal conditions we notice that, if we con-
sider a body fiee and subject to a system of balanced forces, said con-
ditions vill necessarily impose the equality, in every point, between
external actions P,. and Op, acting respectively on bases
z = 0 and z = 1, &and corresponding normal stresses 82(0,‘) and 6‘;([, 8);

therefore, they are as foilnws:
6;_/018)=’ P"

(1,55)
Gz(4,5)= otx

Equations (1,55, expressed with equations (1,.1) for displacement give:

T »
/2’_‘1’ - - _f-:.é'/a....,:. &3 (0s)
OF /gpe £ .
1,56)
(9’ / yr N (r
52" = et T2l 5
// E/ewe £ /2 /,l /
which represent the two necessary longitudinal conditions to be associated
wi ) basic equation (1,53). We notice that on bases z = ¢ and z = 1

the iaentity in every point between external actions and jinternal stresses
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concerns ¢nl, normal streises and not shear stresses for which aquations
(1,44) guaresntee gichbal identity referrei to resulting actions (forces
and momentj.

As far as the ond bases ars concerned, the difference in
every point betwsen external actlons 'P.‘ and internal Streszes
Zws 18 entirely absorbed by two existing stiffeners and, consequentiy,
does nct ~ause any additional deformations or stresses not even in the
areas very clcse to the two bages.

Equations (1,56} are therefore ths only longitudinal conditions
concerning the extreme hases.

A difterent procedure is regquired for transversal conditiors,
since they depend upon the type of the cross section. Therefﬁio, we
will consider ‘& case Yy case in regards to the sh: . of the cross
section direct: .

a) Open goctions having continuous directrix

¥e consider as continuous directrix a curve having functions
x(s), y(8} ana ccz(s) continuous vs to the decond derivatives; =uch
sections (fig. 5) cannoit have mor: than two generatrices and we denote

8, and 8, respectively their curvilinear abscissa.

1

Fig. &5 ) e —

If we denote Pl(z) and Pz(z) the tang.ontial loads eventually

acting on such generatrices, and t the constent thickness of the wall,

20




we can write the transversa! conditions as follows:

as[s,o,zjz— ;-i_‘”/{/

(1,57)a
a}‘(SJ,Z/:,‘ 7?(3/
“I—
Taking into account equations (1,54) and denoting L(w) the
term:
L= Pn_ 2K [Our ol Vet oly [Pur ol Vol
s a/S,{ds YA /% /s s
“ (1,58)

_ v [dwella/f
/ s ofs
equations (1,57) can finally be written as follows:

o= B ) 3 e

5 X

— ‘é’l.— d 7
Z/“f[r-sc L ‘ 8:47.;{/— Z;ZJ?Z: /,Z;KKS‘/ (1,59)a

So S,

b) Close sections havingﬁcontinuous directrix

In addition to what stated in paragraph a) above, concerning
the definition of continuous directrix, for these sectiogs (£ig. 6)
the transversal conditions will be expressed as continuity conditions
for functions k/'(z‘, S/ and 2% (.Z, S/ (beirg t constant) in the
limited field of curvilinear abscissa s, Such conditions, reflecting
the double aspect of geometrical compatibility and equilibrium, will

be expressed as follows:

f‘;%_fo/szo

Pees of <

which, because of equations (1,54) and the hypothesis of continuous

(1,57)b

coordinate functions, become:

[ 4
f;_fg‘-/—a/s_—_- 12 Jé-{;/Ss o (1,59)b
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Fig. 6
From equations (1,59) in the form a or b, in accordance with
the type of cross section associated with the longitudinal conditions

{1,56), we can obtaiﬂ“univocally the solution of basic equation (1,53).

1,8) Basic equation extended to thin walled beams having discontinuous

directrix and discontinuous constant thickness

In reality the thin walled beams are nearly always formed by
more than one element (fig. 7), everyone of which can be considered

as an elementary beam Laving continuous directrix and constant thickness,

9| jl

Fig. 7

22




Denoting n the number of elements torming the beaz and i
2 general element, the displacement parameters indicating the wotion of

every point of the beam cross section will be the n + 3 functions:

Uo(z/

’e(2/ '
%[.Z‘j (1,12)
Mlms) (=G e)

being v, (51' z) the axial displacement of point Py (si, z) of the

alement middle surface.

Then, denoting x4 {s;), ¥y (81),c%‘1 (sy), ry (sy) the functions

typical of element i, and x (sy), ¥y (si),.fnzz1 (51) the varied expres-

sions:

/kf(Gsd/:=jf;:f/gaa“)cfésﬁ/1‘ :228;;4165;)A*' ;ZZJ‘:‘Zr/(i;,i;()
%[Slj:f{ / Da X (5 4 DLee /(507 Los Cles (- s,..//f

(1,29)"

where Dy, are always the complementary matrices of elements d;, of

determinant (1,47) which, this time, we express as fcllows:

e )

o= // /a//
Aog= = //a/w,/,// »

":x - ¢EEE .53122522%2'614’1

t=y GVEQ' Z

4,
pv4 .-,-J_‘_;' ﬁ‘/f”l{,‘g/,/ (1,46) "
£ /sy é?s' ’
9,

C’{;dh;EET "/éftswﬁfzf:
= ;a/.s
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the equations determining dispiacements Z€, , V: 0 5‘: , with expres-—

sions (1,59) of forces Z; 5 6.7 . Z’Z; , become:

@/Z = J=, @/5/ g

/;'

e . = [Pura ol 2
oz ""o?s,_;},'/ -}(?’67‘ E4

(1,51)'

/er/ﬂ, TE
c;/gf ‘;7 I, als, b L £

Therefore, n equations determining displacements w:will bhe

written as follows:

2wy, Qur_ = [ ot D
fL.J’ Szt 7L¢91§i‘ Py ,.:244:' 6054( -—1;2'4535- e ‘;7.lg:l44{,g

‘l 8, ' oy

_ 4&1254-: - cﬂcv”¢s<]?ard./$4‘ f;/(jéig; c:,, dth’f
0/5' “'l JSI; -’ *

(1,5

where t; represents the coastant thickness of element 1i; P,i (31) represents
the axial load acting on said element for unit of surface; and 8:;'
represents the anelastic strain component acting on the same element.
Therefore n + 3 equations formed by (1,51)' and (1,53)' generally
solve the problem of elastic equilibrium of thin walled beams, provided
that its section has constant discontinuous thigkness,
In order to solve said equations we must find the longitudinal

and transversal boundary conditions,
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The first ones express, as usual,

C::/(iiLCL/=?-—/ﬂ==$l'

the equilibrium condition:

(1,05}
6;"[5"145/: /DI:, s ’

and, reduced in terms of displacement, give:

/afi‘!? == —?‘7’"» # &52(5,0/

Z ‘wmo (1,56)'

D /»Z . * s
(35]5 s s o U

while the transversal conditions will conce¢rn geometrical compatibility

and equilibrium conditions corresponding to every junction point of

several consecutive elements.

Denoting k the number of elements present in the junction

(fig. 8), these latters will be written as follows:

> 5:31¢:[=?J.£;1£/5£Zf'1 zr,/

2 — (1,57)"
%/z‘ L zea (52, z:,/.—.— 7=/

where 51 is the curvilinear abscissu of the junction in relation with

element 1, and Py {z) is'the eventual external tangencial action acting
on the junction point itself.

~

(>3

“

Fig. 8

In the summation, the positive signs concern the elements

having curvilinear abscissa converging in the junction point, and the
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negative omes concern the remsining elements. Therefore, egaations

(1,57)', eritten in terms ef displacement, give:

b?[-;.'l/l’ N7, ¢ Kg':'.;w,l?/

Iy o Zoaly 2
e Tr sl n Gl s My

( L20

_ F,59)
- s

and is obvious the change, if the end of element i ig free rather than

connected to other elements,

1,9) Conclusions

Prom the study performed it anpears clear that the problem of
elastic equilibrium of thin walled beams, considersed as cylinders having
transversally indeformable profile, is more complicated than what could
ve expected following the beams technical theory or the more recent Vliasov's
theory of sectorial area.

In fact, the problem can astrictly be expresssd by an integro-dif-
ferential equation linear to the partial derivatives in unknown function
w (z, 8), which physically coincides with the axial component of points
displacement of middle fiber of the wall.

Such equation is not of difficuii solution; a general solution
will be furnished in the following psrt of this report, showing how our
solutions are gimilar to those obtained by abose mentioned approximate

theories and pointiag out the unavoidable approximation of same theories.

—-—————— - — -
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2) STABILITY
2,1) Introduction

. nt static behaviour of & thin walled beam in regards
of St. Yen nder appears conspicuous when we study its equilibrium
atabilityi"niﬂke the clasaic behaviour ¢f the beam subject to combired
bendirg

lpréssive stress, which bends in a main inertia plane of

the fectio case nf unstability due to axial stress, the thin walled

beam ofﬂon bends and twists at the same time under loads much

snaller uRFT corresponding to Eulero’s formuia.
wility of having & flexio-torsional buckling under

axial strgifeemedwstovered when thin walled members of open section
were used !or rst time in designing aeropsutic structures: many

], ostenteld [13] , P. ard H, Bleich (14] , and

Authors
Kappus [
¥, and H gl
Goodier :
[1e],

determine the presence of bending in the beam, the center of gravity

ted the laws governing the phenomencn. Only with

to the more recent studies of Tinoshenko[G] and
>ther with the works of Vlnsov[lsl and Goldenweiser
' principles have been establiished: in order to

had to M"EPETItuted with the center of torsion; only when the axis

of the center of torsion was rectilinear no flexural energy was presant
in the thin walled members; and, furthermore, the warping rigidity C;
was exactly formulated.

Of great importance are the studies performed by Vliasov [15]
for the formulation of a theory concerniag the unstability of the thin
walled beam of open section subjext to normal, bending and shearing
stregses, and the s.udies performed %y Krall [17], who obtains the stabi-
lity equetions by using the variationa) approach with the introduction
of tha twisting moment znd considering verious cases of combined unsta-
bility,

The constant progress of technics lad to an always wider
application of the thin walled beams; this structural element is now
present in most civil and industrial, naval, aeronautic and space
constructions

Therefore, the study of equilibrium stabi  ty of a thin wzlled
beam of cpen section is always cof great interest and new problems arise:
as, for instance, the basic one concerning the influence of the dislocation

on the stability, its effect and the effect of external conservative and
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ponconsorvative forces on the dynamics, etc.

Thus, we want to examine again the whole system of elastic
equiiibrium stability of the thin walled beam subject to general
loading and dislocation snd we try to set up » new general theory.

The study 2f such beams, as conducted in the first part of
this report and connected with researches undervay, the results of which
will be furnished in a later report, confirm the validity of sectorial
greas theory without consideration of loucal effects connected to the
presence of concentrated forces, holes, etc.

Thus, making uwse of Vlasov’'s static thecory, simple and suffi-
ciently correct for amn invest‘gation on such phenomena, we obtain, in
accordance with Jynamic method, and using a geometric systenatic pro-
cedure, the basic differential equations governing the stahility problem
of the beam mction under generally distributed conservati s forcesaand
dislocations., Suc: equations are expressed by the loady iirectly applied
and the stress coiporents corresponding to the bas:c nor“iguratior and
includes four furctions characterizing the flexural, torsional anc
extensional oscillations respectively. The extensional “scillation is
often neglected, but is interesting because of its stabil:zing efiects,

The systom of forces FC (x y z) acting on the tain walled beam
is formed by distributed forces Qox(z, s); Qoy (z, 8); Q°z (z, s8), which
have the same direction of axes x, y, z, and are functicas of curvilinear
abscissa s formed by the center i1ine of the cross section. Such forces "
are conservative and keep their direction during the displacement of
the points at which they are applied and generally originate a distri-
bution of transversal forces p°x (z) and p°y (z), axial forces p°z (z),
bending couples nox (z) and noy (z), twisting couples m°z (z), and
bimoments B (z).

The dislocations system Z}'(x y z) causes a stress condition
which can be annulled, generally, only by dividing the body into its
elementary particles or, more simply, by cutting it into a finite number
of planes. The introduction of the dislocations system Ao (x y z) will
be useful later for the study of the unstabilizing effects caused by

residual stresses, non uniform thermic field or prestressing systems.




2,2) General remarks on approach method

Fig. 9 shows the axes system where¢ C is the centroid; x and y
are the main inertia axes of cross section; z is the centroid axis.

The coordinates of shear center O in the section plane are xo and Yor

Y/i -
LA e

y?

Fig. 9

The external forces are generally represented by components
Q°x (z, 3), Qoy (z, ). and Qoz (z, s) having the same direction of
axes x, y, z of fixed coordinates system Cxyz; and ara general functions
of curvilinear abscissa s formed by the center line of thin cross section
and by abscissa z. Such forces will be considered as conservative forces
and, specifically, as keeping unchanged their directions determined by
fixed axes x, y, z respectiveiy. The loads at the end sections are
formed by a distribution of general forces but still conservative cor-
responding to normal, shearing, bending, twisting and warping actions.
The coaction state due to dislocations is represented by normal and
shearing stresses in every cross section sel.’-balanced if the external
constraints do not react,

Therefore, with reference to a general cross section of the
body, the stress siate will be represented by seven stress characteristics;
bending moments Mx (z) and i;'Ti); twisting moment M, (z) ; shearing stresses
Tx {(z) and Ty (z): bimoment B (z), as shown in fig. 10.
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Fig. 10

The thin beam motion will be formed by:

a) & system of displacements, typical .f a flexural oscillation,
by which the axis of shear centers 0 bends in ths planes xz and yz,
and the cross sections of the be~m transfer along their planes and
rotate around axes x and y,

b) a system of displacements, typical of a torsional oscillation,
by which the cross sections transfer along their planes, rotating around
the shear centers axis (which remains re~tilinear) and warp because of
the sectorial areas; ’

c) a system of displacements, typical of an extensional oscillation,
by which the cross sections transfer in parailel with theomselves along
the direction z of fixed system Cxyz.

The new actions developing along the direction z on the element
dA dz will be calculated by determining:

1) the transversal and axial elementary forces due to the change of
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direction of stresses ¢ dA , ta 014 , 6; 4'/4 , following the
fibers buckling,; x 4

2) the elementary couples, which we call “turnover” couples, causing
the rotation of element GA dz around fixed axes x 2nd y and z #nd due
to the components along gxes x, y, z of fizxad system of elementary forces

t;x g4 ‘t‘q dA 6; @4 . acting on the buckled body;

3) the elementary ccuples, which we call "displacement” couples, due
to the fact that forces t:l’)( d4 ’C‘ya'A , s;dﬁ , acting on the
two sides dA of eiement dA dz and the surface forces Qo(zla) d4, Qc(z;»s) d4,

Qz (Zd) 43 , during the buckling, assume a different ;osition 1{1 regards
0of fixed referenced csystem,

Further, we calculate the actions which, because of the degree
0f freedom of cross section, are consequent on the previous ones; in this
manner torques distributed on z will be associated to a transversal elemen-
tary load, and bending couples and bimoments will be associated to axial
actions., The determination of inertia forces will compiete the calculation
of the actions caused by imposed displacements,

Such procedure 1s sistematically used for ths flexural, torsional
and extensional oscillations and permits to formulate the general equations
expressing the motion of the thin walled beex in general as well as taking
into account the unstabilizing effects of stresses (correspording to the

basic position of the beam) and of tne surface Joads,

2,3) Effects due to flexural motion

Let us consider the flexural deformation, It is charsacterized
(fig. 11) by aisplacement components:

u(z, t) ; v (z, t) (2,1)
of the line of shear centers 0; and, for the rotation of sections around
exes x and y, by the displacement component along axis z.

W(“,7,=,5)=—(%%3‘* g-‘z-ry) S50
¥e consider, above all, the unstabilizing effects due to stresses
and we calculate, along axis x of fixed system Cxyz, the components
dfx of the elementary forces ac.ing.on the elementary buckled stripe dA dz
of the beam pertaining to two cross sections at the distance dz, With

reference to fig., 12, representing e projection of dA dz on the plane
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e of
Yo 90
U
W M
x z, we have:
o Ju
Jc,._" o %1'(0;-:- i—?‘dz)dﬁ d ((u = dz) (2,3)

since the load Qoz (z, s) ds dz applied on the element does not give any

component along x and keeps the direction of axis x.

R >
U. u;«- ’d.z J -
6, dA Qz(?,:\) dé dz

o5,
(6;‘ ;&-dZ) Jﬂ

X Fig. 12

Developing equations (2,3) we obtain, neglecting quantities of
higher order than the first:
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d di
df; = -;(5;92 d”_) (2,4)

In this manner, for unit of length, we heve the cross elementary load:
dp = ‘_;.(b‘ ‘25—'44/‘ (2,5)
2" gp " % b2

Correspondingly, we have the elementary moment dMy, due to the

components of '; db’ aiong x which tends to turn over the element dA dz

around axis y,; it is:

i =it e
) <

in this manner, for unit of length, we have the elementary distributed

moment :
~
o (2,6')
- F dA ——— L}
dw, < - 6,4 &
and, for the whole section:
Jdu.
.. |62 Z&dA4 2,7
Prcjecting the buckled element on plane yz, we have (fig. 13):

I96; 3
df)f :-6;49354(6;4 £3dz)dﬂ£(r, %‘Jz} (2,8)

because, also in this case, the loads Q°z (z,8) have no effect along y.

o8, ‘.
(6« 55 d2)dA

Pig. 13
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Developing equetion (2,6) we obtain, for unit of length:
2,9
dp, = (6;. dﬁ) (2,9
in the same manner as f¢ o equation (2,6), we have the moment:

JM,‘:«GJ'J/?%O(Z (2,10)

tending to turn over the element dA dz around axis x; for unit of length,

we have the elementary distribution monent:
dwm =-gd4 _____acl“ (2,10
x = 6z

and, for the whole section:

ov
4"":-./”6: é_?-z-‘g (2,11)

Integrating equations (2,5} and (2,9) cn the transversal area,
we have the new distributed actions due to the fact that, in buckled
condition, normal stresses G} lean forward forming variable zngles in
regards to the original direction of z axis.

Thus we have:
e Qi 4 0 (6 2 44
B = ﬂr-i;(o:" 02 ) };:433(362 ) (2,12)
Equations (2,5) and (2,9) give the transversal load due t> tke

flexural buckling of the elementary stripe dA dz; consequently, we have

the following twisting elementary moment distributed along z:

[6‘ (Y ) ”]_ _[&z&f(x. X)Jﬂ] (2,13)

using the symbols of fig. 13 which shows as positive the twisting moment
(or the angle‘f ) it its direction of rotation is the same bringing axi:

x on axis y.

Integrating on the whole cross section A we obtain:
( 5‘ Xy X }dﬂ (2,14)
, jaz Y,~Y) - ( )

Equations (2,8) and (2,10) are always valid if the loads Q% (z,s)
keep the same direction of axis z of fixed system Cxyz. Let us consider
now the effects of shearing stresses 't;x and T acting on the transversal

Ty

With reference to fig. 14, showing the projection of element dA dz

sides dA of the elementary buckled stripe.

on plane x, z, we calculate the components along z of eiementary forces
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ow
w + 2%

T;,dﬂ /‘ 6z ¢
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i m I(tlz‘ ‘52%;’ dA

Fig. 14

« ¥

acting on the buckled stripe.

Therefore we have:
- .2 I sn)dz (2,15)
C{ng - - 672:<:z;lﬁf o2 A)

where the effect of surface loads Q°x (z, s) is not present, since such
loade remain parallel to the axis x of fixed system Cxyz.
In conclusion, for unit of length, along z we have the following

-

elementary axial load:

dp, = (cu 92 < 94) (2,16)

In the same manner, considering the projection of buckled stripe
dA dz on the plane zy to calculate the effect of l}7 oblique in regards
of fixed axis y, we have (fig. 15):

df = é’:dﬂ (&' 4at¢>’,')dﬂ J (U'*‘——-dzj (2,17)

2 ?7 9z
where is not present the effect of conservative loads Q°y (z, 8) which
keep their direction along y.
Developing equation (2,17), we have:

dfg"«-——(t dﬂ)a’z

(2.18)
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Fig. 15

representing the new action along z due to the different slopes of stresses

in the buckled state of element dA dz; for unit of length, from
equation (2,18) we have:

JP = - i(t{ = dA ) (2,19)
2 dz " Y oz
Equations (2,16) and (2,19) refer to the elementary area dA

’
for the whole area A of the beam cross section, we nave the following
new axial action:

Je
R = jaz(uaz ‘Yo"z) 4

(2,29)
A

To equations (2!16) snd (2,19) are ssscciated some distributed
bending moments, since they act at distance x
centroid; theretore, we have for 'bz‘ the elementary distributed
moments dmx and dmy

and y from the axis of the

07/ o"u. I du
dw = T T o ydd)  dw =-Z (5, TxdA)

y a 2X 9z (2,21)
and for t;),

_ 9 AP 9 (v Zxdh .

dw = - 3‘5( 2y 52 dn/ a’” 3 ‘)’02. / (2,22)

Integrating on arva A we tinally have:

e
P / 5 (Cex 5571 Ty o7 )

(2,23)
(% Ml drx) dR (2,24)
M : jdz 527" ‘rdz /




Turthermore, equation {2,16) glves the bimoment variation:

ae A
’-Jx;az( xxé‘z “*t 3;“’)#} (2,29)

Equations (2,7), (2,11), (2,12), (2,14}, (2,20), (2,23),
(2,24), and (2,25) represent the new actions due to the variable slopes
of norma! and shearing stresses in the buckled staie, but it is essential
to notice that in such condition the forces acting on the e._ement have
a different position if compsred to the fixed axis Cxyz. Obviously, this
changes the stresses field in the body; in order to calculate this effect
it will be sufficient to refer %o the elementary stripe .A dz and consider
the moments, reiative to the forces acting on two sides dA as well as
those actirz on lateral surface of dA dz, due to the displacement of
such forces fr(n basic pogition to the displaced one.

We begin by considering the effects of the displacement of
eledxentary shearing forces U 4 and T d‘i , ulstributed on A,

&x &y
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